Skip to main content

Featured Post

Your First Programming Language

What programming language you start with really all depends on where you want to go with programming/coding. The great thing about this field is that there are an absolute abundance of smaller fields that you can go into, all using programming in their own unique ways. For web applications, a good start would be with HTML and later moving your way through CSS, JavaScript, JQuery, PHP, SQL, and any of the JavaScript libraries. Ruby is also a popular choice, so I would recommend checking that out too. For more scientific fields or areas with more machine learning and A.I., Python is generally a great place to start as it is widely used in that field of study. C++ is also a very useful language to know for that, but it can be a little more challenging for beginners. For game and application design, languages such as C#, C, Swift, Kotlin, and Java are most often used for that.

Hue Drops Puzzle

Description
I found the game Hue Drops on a recent flight, turns out it's also a mobile game. One reviewer described it:

You start with one dot, and you can change the colours of the adjacent dots. It's like playing with the paint bucket tool in MS Paint! You slowly change the colour of the entire board one section at a time.

The puzzle opens with a group of tiles of six random colors. The tile in the upper left remains wild for you to change. Tile colors change by flooding from the start tile to directly connected tiles in the four cardinal directions (not diagonals). Directly connected tiles convert to the new color, allowing you to extend the size of the block. The puzzle challenges you to sequentially change the color of the root tile until you grow the block of tiles to the target color in 25 moves or fewer.

Today's challenge is to read a board tiled with six random colors (R O Y G B V), starting from the wild (W) tile in the upper left corner and to produce a sequence of color changes
Input Description

You'll be given a row of two integers telling you how many columns and rows to read. Then you'll be presented the board (with those dimensions) as ASCII art, each tile color indicated by a single letter (including the wild tile as a W). Then you'll be given the target color as a single uppercase letter. Example:

4 4 W O O O B G V R R G B G V O B R O

Output Description

Your program should emit the sequence of colors to change the puzzle to achieve the target color. Remember, you have only 25 moves maximum in which to solve the puzzle. Note that puzzles may have more than one solution. Example:

O G O B R V G R O

Challenge Input

10 12 W Y O B V G V O Y B G O O V R V R G O R V B R R R B R B G Y B O Y R R G Y V O V V O B O R G B R G R B O G Y Y G O V R V O O G O Y R O V G G B O O V G Y V B Y G R B G V O R Y G G G Y R Y B R O V O B V O B O B Y O Y V B O V R R G V V G V V G V

Solution
in python


inp= """10 12
W Y O B V G V O Y B
G O O V R V R G O R
V B R R R B R B G Y
B O Y R R G Y V O V
V O B O R G B R G R
B O G Y Y G O V R V
O O G O Y R O V G G
B O O V G Y V B Y G
R B G V O R Y G G G
Y R Y B R O V O B V
O B O B Y O Y V B O
V R R G V V G V V G
V"""

colors = "R O Y G B V".split()

def deep_copy(l):
    return [[i for i in y] for y in l]

def make_iteration(field, flood, colors):
    res = [0]*len(colors)
    color_flood=[0]*len(colors)
    for i, color in enumerate(colors):
        #print(i)
        color_flood[i] = deep_copy(flood)
        temp_res = sum([sum(x) for x in color_flood[i]])
        while True:
            for x in range(len(flood)):
                for y in range(len(flood[0])):
                    if color_flood[i][x][y] == 1:
                        if x > 0:
                            if field[x - 1][y] == color:
                                color_flood[i][x - 1][y] = 1
                        if x < len(field)-1:
                            if field[x + 1][y] == color:
                                color_flood[i][x + 1][y] = 1
                        if y > 0:
                            if field[x][y - 1] == color:
                                color_flood[i][x][y - 1] = 1
                        if y < len(field[0])-1:
                            if field[x][y + 1] == color:
                                color_flood[i][x][y + 1] = 1

            if temp_res == sum([sum(x) for x in color_flood[i]]):
                break
            else:
                temp_res = sum([sum(x) for x in color_flood[i]])

        res[i] = temp_res

    m = res.index(max(res))
    return colors[m], color_flood[m]

inp = inp.split('\n')
size, field, final_col = list(map(int, inp[0].split())), [x.split() for x in inp[1:-1]], inp[-1]

flood = [[0 for i in range(size[0])] for y in range(size[1])]
flood[0][0] = 1

while True:

    color, flood = make_iteration(field, flood, colors)
    print(color)

    #BEGINNING of unnecessary for solution, just for presentation
    field = [[color if flood[x][y]==1 else field[x][y] for y in range(len(field[x]))] for x in range(len(field))]
    for x in field:
        print(x)
    # END of unnecessary for solution, just for presentation

    if sum([sum(x) for x in flood]) == size[0]*size[1]:
        break

print(final_col)
for x in field:
    print([final_col]*len(x))

Comments

Popular posts from this blog

Decipher A Seven Segment Display

Description Today's challenge will be to create a program to decipher a seven segment display, commonly seen on many older electronic devices. Input Description For this challenge, you will receive 3 lines of input, with each line being 27 characters long (representing 9 total numbers), with the digits spread across the 3 lines. Your job is to return the represented digits. You don't need to account for odd spacing or missing segments. Output Description Your program should print the numbers contained in the display. Challenge Inputs     _  _     _  _  _  _  _   | _| _||_||_ |_   ||_||_|   ||_  _|  | _||_|  ||_| _|     _  _  _  _  _  _  _  _ |_| _| _||_|| ||_ |_| _||_   | _| _||_||_| _||_||_  _|  _  _  _  _  _  _  _  _  _ |_  _||_ |_| _|  ||_ | ||_|  _||_ |_||_| _|  ||_||_||_|  _  _        _  _  _  _  _ |_||_ |_|  || ||_ |_ |_| _|  _| _|  |  ||_| _| _| _||_ Challenge Outputs 123456789 433805825 526837608 954105592 Solution in Go package mai

Continued Fraction

Description In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. A continued fraction is an expression of the form             1     x + ----------                1         y + -------                   1             z + ----                  ... and so forth, where x, y, z, and such are real numbers, rational numbers, or complex numbers. Using Gauss notation, this may be abbreviated as [x; y, z, ...] To convert a continued fraction to an ordinary fraction, we just simplify from the right side, which may be an improper fraction, one where the numerator is larger than the denominator. Continued fractions can be decomposed as well, which breaks it down from an improper fraction to its Gauss notation. For example: 16        1 -- = 0 + --- 45

Kolakoski Sequence

Description A Kolakoski sequence (A000002) is an infinite sequence of symbols {1, 2} that is its own run-length encoding. It alternates between "runs" of symbols. The sequence begins: 12211212212211211221211212211... The first three symbols of the sequence are 122, which are the output of the first two iterations. After this, on the i-th iteration read the value x[i] of the output (one-indexed). If i is odd, output x[i] copies of the number 1. If i is even, output x[i] copies of the number 2. There is an unproven conjecture that the density of 1s in the sequence is 1/2 (50%). In today's challenge we'll be searching for numerical evidence of this by tallying the ratio of 1s and 2s for some initial N symbols of the sequence. Input Description As input you will receive the number of outputs to generate and tally. Output Description As output, print the ratio of 1s to 2s in the first n symbols. Sample Input 10 100 1000 Sample Output 5:5 49:51 502:498

Advanced pacman

Description This challenge takes its roots from the world-famous game Pacman. To finish the game, pacman needs to gather all pacgum on the map. The goal of this chalenge is to have a time-limited pacman. Pacman must gather as much pacgum as possible in the given time. To simplify, we will say that 1 move (no diagonals) = 1 unit of time. Formal Inputs & Outputs Input description You will be given a number, the time pacman has to gather as much pacgum as possible, and a table, being the map pacman has to explore. Every square of this map can be one of those things : A number N between (1 and 9) of pacgums that pacman can gather in one unit of time. "X" squares cannot be gone through. "C" will be where pacman starts. "O" (the letter, not zero ) will be a warp to another "O". There can be only 2 "O" on one map; Output description Your program should output the maximum number of pacgums pacman can gather in the given t

Puzzle Me This

Description First they took our jerbs, now they're taking our puzzles! (with your help) Today we're gonna find a way to solve jigsaw puzzles using computers Input Description As I am no designer the input will be purely numerical, feel free to make some visual version of the jigsaw puzzles :) You will first be given the dimension as X, Y Afterwards you will be given list of puzzle pieces and what type their 4 sides connect to (given as up, right, down, left) Their side-connection is given as a number, They connect with their negated number this means that a 1 and -1 connects, 2 and -2 connects etc. 0 means that it doesnt connect with anything. Assume pieces are rotated in the correct direction. fx: 2, 2 0: 0,1,2,0 1: 0,0,2,-1 2: -2,0,0,2 3: -2,-2,0,0 Output Description Output is a 2D picture/matrix of the pieces in their correct position for the example this would be 0 1 3 2 Challenge Input Challenges are generated, so there is a slight chanc

Everyone's A Winner

Description Today's challenge comes from the website fivethirtyeight.com, which runs a weekly Riddler column. Today's dailyprogrammer challenge was the riddler on 2018-04-06. From Matt Gold, a chance, perhaps, to redeem your busted bracket: On Monday, Villanova won the NCAA men’s basketball national title. But I recently overheard some boisterous Butler fans calling themselves the “transitive national champions,” because Butler beat Villanova earlier in the season. Of course, other teams also beat Butler during the season and their fans could therefore make exactly the same claim. How many transitive national champions were there this season? Or, maybe more descriptively, how many teams weren’t transitive national champions? (All of this season’s college basketball results are here. To get you started, Villanova lost to Butler, St. John’s, Providence and Creighton this season, all of whom can claim a transitive title. But remember, teams beat those teams, too.) Outp

Star Battle solver

Background Star Battle is a grid-based logic puzzle. You are given a SxS square grid divided into S connected regions, and a number N. You must find the unique way to place N*S stars into the grid such that: Every row has exactly N stars. Every column has exactly N stars. Every region has exactly N stars. No two stars are horizontally, vertically, or diagonally adjacent. If you would like more information: Star Battle rules and info YouTube tutorial and written tutorial of solving Star Battle puzzles by hand There are many Star Battle puzzles available on Grandmaster Puzzles. Just be aware that some are variants that follow different rules. Challenge Write a program to solve a Star Battle puzzle in a reasonable amount of time. There's no strict time requirement, but you should run your program through to completion for at least one (N, S) = (2, 10) puzzle for it to count as a solution. Feel free to use whatever input/output format is most convenient for you. In the